CALCULATION OF NONSTATIONARY FINITE~-
AMPLITUDE WIND WAVES

R. L. Kulyaev UDC 532.59

Reviews of the present state of wind-wave investigation can be found in many papers (for
instance, [1, 21). A method for solving the problem of motion of finite-amplitude internal
waves was proposed in [3]. However, the algorithm used there did not prove useful in the
case of wind waves. In connection with this, we propose here a new algorithm. The cal-
culation results are in agreement with data obtained in observing actual wind waves.

§ 1. Plane motion of two incompressible, nonviscous, and nonmixing fluids with different densities in a
gravitational field is contemplated. The flow is assumed to be continuous everywhere in the plane, potential
at points away from the boundary line separating the fluids, and periodic in the horizontal direction.

Assume that the axis of ordinates of the x, y Cartesian coordinate system is directed vertically upward
(Fig. 1). Inthe upper Dy and the lower D, flow regions, the fluid velocity V =(Vx, Vy) satisfies the equations

divV =0,10t V=0, (z,y) & L, (1.1
the periodicity condition
Nz+rMy,t)=V(z, 58, @y &L (1.2)

and the following boundary conditions: Flow-velocity perturbations are damped with increasing distance from
the boundary line L, '

(_v@"—uvo), y'_)'i‘oov

V(xa Y, t)—) (vw_u’ 0), y— — oo, (1-3)
the fluids do not flow across the boundary line,
Viv=w-w,j=1,2 (z.y) & L, (1.4)
and the Laplace law holds for the hydrodynamic pressure drop across the boundary line,
Py —py = p‘k! (l’, y) = L1 . (1'5)

where A is the wavelength; t is the time; v, = const is half the wind velocity; u=const; v is the unit vector of
the normal to L, outward for the domain D,; w is the velocity of points of the lineL; V j and pj are the limiting
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values of the velocity V and the pressure p, respectively, in approaching L from the domain Dj, i=1, 2; ¢ is
the surface tension coefficient; and k is the curvature of the boundary line; k> 0 if the domain D, is convex in
the neighborhood of the point under consideration.

It is assumed that the initial velocity field

V(z, y, 0) = Vy(z, v) (1.6)
is known and that it satisfies conditions (1.1)~(1.4).

The problem (1.1)-(1.6) is nonlinear, since condition (1.5) is nonlinear with respect to the flow velocity
field, while the boundary line L and the velocity with which it moves w* v are unknown for t> 0.

§2. Assume that the curve L is smooth and that it does not have singular points. We introduce the quan-
tity v=(vx, vy) by means of the equation

¢)]
ve— vy = — 4+ o | ¥(0, ) et [L(s, 1) — L (0, )] do,
1)

where [ is the length of the wave contour; s and ¢ are the arc abscissas; the positive direction of movement
along the contour L is that for which the domain D, stays on the left (see Fig. 1); v(s, t) =(V,=V,) * T is the
intensity of the vortex sheet; T is the unit vector of the tangent to L, oriented in the direction of increase in
the arc abscissa; and £ (s, t)=¢ + in is the complex coordinate of points of the boundary line. It is assumed
that the functions v and 8£/9s, as functions of the arc abscissa, are continuous according to Hélder, while
the integral has the principal meaning of Cauchy.

In deriving the equations of motion of an internal wave, in [3] the tangential component w; =w- T of the
velocity of its points was assumed to be equal to wr =v-7. In this case, the equations have the simplest form.
However, the algorithm for the numerical solution of these equations composed in [3] proved to be inadequate
for calculating the motion of wind waves (where v, # 0). This is due to the fact that, in the course of time,
the calculation points tend to concentrate in one section of the wind wave and thin out in another. Attempts to
introduce in the algorithm a uniform redistribution of calculation points along the wave contour did not improve
the algorithm, since this procedure impaired considerably its stability.

This trend in the behavior of the calculation points can be eliminated by putting w; = 0. In this case, the
equations of wave motion are derived as in [3]. In this, we pass from the Eulerian arc abscissa s € [0, I(t)]
to the Lagrangian variable a € -7, 7] with a time correspondence between the points of the wave profile given
by
143 o — ,' .
(2@, 2 @)= v v
we introduce the function
I(a, t) = v{(s(a, ), 1){Cala, B
it is assumed that, at a time close to t=0, the derivatives 8'/3a and 8%¢ /94® exist and are continuous accord-

ing to Holder as functions of a Lagrangian variable. Then the equations of wave motion with respect to the
functions T'{a, t) and ¢{a, t) are given by

T (@, 8) = gy Im {La (@, ) ¥ (2, )); (2.1)

Ty(a,t) + R | Ty(a, t) R (a, @, t) da= H (4, 1), (2.2)
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where
' v(a, t)= —u-{-;ﬁ 5 T (e, t)ctg—:—[g(a, t) — ¢ (e, £)) da;

K(a, @ 8) = 412, (e, ) otg - (€ (@, 1) — £ (=, 1)

"
H(a,t) = 2RRe{{s v S I (@) —2t («;)r ~n@
= 1~ cos 5L (a) — )]

4

2uk 2 —
+ 22— R(L + 20n+ 02— oA)} - 2R Re(iaB),
where p; is the density of the fluid in the domain Dj, j=1, 2; the parameter R=(p2—p1)/(p2 +py); g is the ac-
celeration due to gravity; and v, — iv, = vL,/|G4|-

The initial problem (1.1)-(1.6) is equivalent to the Cauchy problem for the system of integrodifferential
equations (2.1), (2.2) with the initial data

Ta, 0) = To(a), &(a, 0) = Lo(a), (2.3)

where the functions Ty and &, are assigned. The function T}, must satisfy the condition
k1
| Ty (@) da = 2v.h.
-5

It should be noted that system (2.1), (2.2) differs considerably from the similar system in [3].

The numerical solution of problem (2.1)-(2.3) is obtained as in [3] by using the Taylor formula,
T(a, t + Af) = T(a, t) + Ty(a, t)At + Tyy(a, (A2 - (2.4)

L(a, t + At) = {(a, 1) + Li(a, DAL F Cyula, A2 4 §iyla, H(AD/E. (2.5)

The value of the interval At ensuring the stability of calculations is chosen by performing trial calculations
with different intervals At until the interval is smaller than a certain critical value Atx. The following in-
variants of system (2.1), (2.2) are used for checking the calculation accuracy:

x T

L\ T (a, t) da = 20,4, 5‘ v(a,t),(a, tyda = — uh.

— - .
In order to suppress short-wave instability [3], smoothing-out is used for each interval of the calculated values
of the functions T, &y, Ty, Ly, Ty, and ¢4y4. In this, the smoothed-out value of the function at a certain point is
understood as the value at this point of a third-power polynomial which approximates the function with respect
to its values at the given point and six neighboring points (three on the left and three on the right) according
to the method of least squares.

The program realizing this algorithm has been composed in the AL'FA-6 language for the BESM-6
computer. For 60 calculation points on the wave contour, the calculation of a single step requires 16 sec of
computer time in computation based on Eqgs. (2.4) and (2.5), and 11 sec in computation without an allowance
for the derivatives I'ty and £it.

§3. We shall provide examples of calculations of wind waves at the water—air interface (R=0.9975), In
the cases considered below, A/(2r) and A/(21v.,) are used as the units of length and time. The dimensionless
parameters Fr=gA/(2rv%) and W=p /(o + p,) {1/(2m)}~1 viZ are the Froude and Weber numbers. The constant
u is assigned so that the x, y coordinate system moves at the velocity of a wave with an infinitesimal ampli-
tude. The initial velocity field is chosen in correspondence with the linear theory [4].

Gravitational Wind Wave. Variant 1: FR =0.2556; u=0.4975; ¢la, 0)=a+ i0.27 sina; T'(a, 0) =2+ 0.1997-
sina. Variant 2: Fr=0.64; u=0.2; tla, 0)=a+ i0.17r sina; Ila, 0) =2+ 0.04r sina. The calculations are per-
formed for the time up to t=4 with intervals At=1/10 in both variants. The wave shapes for different instants
of time are given in Figs. 2 and 3 (variants 1 and 2, respectively), where the wave peaks and troughs are
connected by dashed straight-line segments. The wave evolution is characterized by the following features:
The wave symmetry is disturbed; the windward nodes move at the velocity of infinitesimal-amplitude waves;
the leeward slopes of waves become steeper, while the windward slopes become flatter. The latter trend is
more strongly pronounced in the variant with steeper waves. It should be mentioned that, in the first variant
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(in contrast to the second variant), the steepness and velocity of a wave affecting the stability of its evolution
lie outside the wave slope vs wave velocity diagram which holds for actual waves ([1], Fig. 6.4-2). The above
peculiarities in the evolution of wind waves are in agreement with the results of observations in nature.

For values in the range 0 < Fr< 1/R—R, atrend oppositeto that described above prevails: The leeward
wave slopes become flatter, while the windward slopes become steeper.

Capillary Wind Wave. Variant 3: W=3.995; u=—1; t{e, 0)=¢+ i0.2r sina; Ia, 0)=2 — 0.47 sina. The
calculations are performed for the time up to the moment t=1 for the interval At=1/90 without taking into
account the derivatives I'tyy and £4t. The wave evolution shown in Fig. 4 (the wave peaks and troughs are also
connected by dashed straight-line segments) is similar to the evolution of gravitational waves. However, it is
also characterized by the fact that the wave tops become flatter and the troughs deeper.

With a reduction in the Froude and Weber numbers in comparison with those indicated in variants 1-3,
the wave evolution is retarded, while the critical interval Aty remains almost unchanged. The latter leads to
the fact that, in calculating ripple waves, the role of the nonlinear effects caused by the finiteness of the wave
amplitude is not revealed even if a large amount of computer time is used. This means that the linear theory
adequately describes the motion of finite-amplifude ripple waves.
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HYDRODYNAMIC STABILITY OF TWO-DIMENSIONAL
POISEUILLE FLOW OF A NON-NEWTONIAN

LIQUID WITH A HIGH-VISCOSITY CORE IN A
COOLED CHANNEL

A. S. Romanov UDC 532.51:532.135

Viscoplastic liquids occupy an important position among non-Newtonian liquids [1, 2]. The hydrodynamic
stability of the two-dimensional Poiseuille flow of these liquids was investigated in [3, 4). The mechanical
characteristics of viscoplastic media are determined by the dimensionless rheological equation, which relates
the stress tensor deviator 0y to the strain rate tensor fij [1]:

. —
=914+ 2 for —_— 0,017 =%,
oy; ( +]/2f,jf”)f” V2 17017 =

i
fu=0 o Y Tovm<n

@)

where n=7,L/U is the plasticity parameter; u is the plastic dynamic viscosity; T is the ultimate shearing
stress; L is the characteristic dimension (half-width of the channel); and U is the characteristic velocity. Due
to the existence of the ultimate shearing stress 7, for a viscoplastic liquid, zones where the medium moves
as a quasisolid body as well as viscous flow zones can form in the flow of such a liquid through channels [2].

The dimensionless shearing stress T as a function of the dimensionless shearing rate 6 for unidimen-
sional shear flow of a viscoplastic liquid (1) is shown in Fig. 1. The rheological equation (1) is approximate
for many actual liquids and the flow curve is essentially nonlinear for low shearing rates [5] (dashed curve in

Fig. 1). The rheological law is in this case written conveniently as
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